BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance

نویسندگان

  • Bo Zhang
  • Mattias Holmlund
  • Severine Lorrain
  • Mikael Norberg
  • László Bakó
  • Christian Fankhauser
  • Ove Nilsson
چکیده

Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the BLADE-ON-PETIOLE (BOP) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that BOP2 promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing PIF4 activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the bop2 mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3BOP1/BOP2 E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus.

Many plant photoresponses from germination to shade avoidance are mediated by phytochrome B (phyB). In darkness, phyB exists as the inactive Pr in the cytosol but upon red (R) light treatment, the active Pfr translocates into nuclei to initiate signaling. Degradation of phyB Pfr likely regulates signal termination, but the mechanism is not understood. Here, we show that phyB is stable in darkne...

متن کامل

Light-Dependent Degradation of PIF3 by SCFEBF1/2 Promotes a Photomorphogenic Response in Arabidopsis

Plant seedlings emerging from darkness into the light environment undergo photomorphogenesis, which enables autotrophic growth with optimized morphology and physiology. During this transition, plants must rapidly remove photomorphogenic repressors accumulated in the dark. Among them is PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor promoting hypocotyl growth. Here we report...

متن کامل

The Degradation of HFR1, a Putative bHLH Class Transcription Factor Involved in Light Signaling, Is Regulated by Phosphorylation and Requires COP1

All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constit...

متن کامل

Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses

In nature, plants integrate a wide range of light signals from solar radiation to adapt to the surrounding light environment, and these light signals also regulate a variety of important agronomic traits. Blue light-sensing cryptochrome (cry) and red/far-red light-sensing phytochrome (phy) play critical roles in regulating light-mediated physiological responses via the regulated transcriptional...

متن کامل

Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis.

The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017